If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-4m-37=0
a = 1; b = -4; c = -37;
Δ = b2-4ac
Δ = -42-4·1·(-37)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{41}}{2*1}=\frac{4-2\sqrt{41}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{41}}{2*1}=\frac{4+2\sqrt{41}}{2} $
| 1-5x=11-3x | | 0=6x^2+13x+6 | | 5(x-3)=5(x-2) | | 7n+8=4+3n | | 5x+10=3x=10 | | 7x+15=3x+40 | | 2x-12x=30 | | 2(x-3)-12x=+14 | | -6(3r-2)=-8r+40 | | 1/2x=5x+12 | | −4(6−y)+4=−4 | | 2=8−2z | | -7-2x=7(x=8) | | 12x=4x+x | | 2x+5=-x+(-x) | | 3x^2-7=31 | | +4(6-y)+4=-4 | | 0=-5t^2+20t-10 | | 42/3=r1/3 | | 3xx=45 | | 4(6-y)+4=-4 | | 2=2000(0.5)x | | x7=x9 | | X=10.20x9 | | _x7=_x9 | | 141=69q | | 8(-x)(6+2x)(x2-36)=0 | | 6(6x+6)-5=1+31x | | 20=300/x | | 6+2/3b=3/4b-4 | | Y-2x=-168 | | 8=50+20x |